Rapport

Havmølleprojekt ved Anholt

Nettilslutning og teknologivalg

27. november 2008
MRA/DGR
1. Indledning

1.1 Baggrund

For at sikre et effektivt projektforløb og maksimal inddragelse af erfaringer fra tidligere havmølleprojekter gennemføres forud for selve anlægsprojektet et forprojekt, som skal fastlægge det optimale, tekniske koncept for nytillslutning af den kommende havmøllepark og opstille forudsætninger for udarbejdelsen af et beslutningsgrundlag.

1.2 Formål og omfatning
Af hensyn til ordreafgivelse på projektets hovedkomponenter samt den nødvendige myndighedsbehandling skal forprojektet være gennemført med udgangen af november 2008.

Formålet med de udførte undersøgelser er fastlæggelse af den tekniske og samfundsekonominke optimale løsning på baggrund af de givne rammer for havmølleprojektet. Den tekniske udredning skal baseres på følgende overordnede fokusområder:

- Anlægs- og driftsøkonomi
- Rådlighed
- Sandsynlighed for mulig realisering i henhold til rammebetingelser.

Følgende principper for nytillslutning af havmølleparken er undersøgt og evalueret:

- 150 kv-vekselstrømsforbindelse
- 220 kv-vekselstrømsforbindelse – alternativt spændingsniveau
- HVDC VSC jævnstrømsforbindelse.

Desuden er alle 150 kv- og 400 kv-nytillslutningspunkter omkring Djursland vurderet.
2. Analyse af mulige tilslutningspunkter

I forbindelse med lændeføringen og nettutslutningen af havmølleparken ved Anholt opstilles i de følgende løsningsforslag de umiddelbare fordele og ulemper, som vil være til stede ved de forskellige nettutslutningsmuligheder, hvis systemspændingen vælges til 150 kV AC.

Alle 150 kV- og 400 kV-stationer på og omkring Djursland vurderes, så netbaregningerne kan koncentreres om de mest oplagte nettutslutningspunkter. Pladsbehovet og tilgængeligheden vurderes på de enkelte stationer, samt den geo-grafiske beliggenhed i forhold til lændeføringen af såkaldne kontra landkablerne. Ugeledes vurderes renoveringsbehovet for det eksisterende net og sammenhæng med de aktuelle planer.

Grundforudsætningerne for netbaregningerne i de mest oplagte løsningsmodeller skal således ses i sammenhæng med det allerede tilgængelige transmissionsnet, ligesom et kabellagt fremtidigt transmissionsnet.

Ud over det, som er nævnt ovenfor, kan øvrige forhold også komme på tale. Nedenfor følger en illustration af det eksisterende transmissionsnet ved Djursland.

Figur 2-1 Transmissionsnettet på Djursland. Røde linjer - 400 kV, sorte linjer 150 kV, blå linjer - 60 kV.
2.1 150 kV-stationer
Følgende 150 kV-stationer vurderes:

- Hornbæk
- Mesballe
- Moselund
- Trige
- Åstrup
- Desuden vurderes en udnyttelse af 150 kV-generatorledningerne på Studstrupværket.

2.1.1 Hornbæk
Geografisk set ligger Hornbæk relativt på linje med havmølleparken. Dog vil der ved nettilslutning i Hornbæk formentligt skulle anvendes meget lange søkabler, hvor en fornuftig kompensering af disse bliver vanskeliggjort af kabellængden. Desuden ligger Hornbæk på den "forkerte" side af Randers i forhold til havmølleparken. Der er p.t. ingen 400 kV-transformering, hvilket vil blive nødvendigt for at undgå usædvanlig transport på de to 150 kV-forbindelser henholdsvis til Trige og Køhøj/Kærbybro/Tinghøj. Ydermere er både 150 kV- og 400 kV-forbindelsen mellem Hornbæk og Trige kabellagte med en mindre overførings-evne end luftledningerne til følge.

Fordele:
- Der ses ikke umiddelbart nogle fordele ved tilslutning af havmølleparken i station Hornbæk.

Ulemper:
- Stationens placering og begrænsninger i det eksisterende transmissionsnet.

2.1.2 Mesballe

Det kan ikke udelukkes, at der opstår risiko for spændingsspring på 150 kV-skinnen i Mesballe ved udkobling af havmølleparken på grund af nettets simple formaskning, herunder det minimale kortslutningsniveau på ca. 1.500 MVA.
Der kan også risikerer utiladelige spændingsvariationer i distributionsnettet under Mesballe som følge af havmøllernes svingende effektproduktion. Løsningen kan være at etablere en SVC. Ellers kan det blive problematick at koble havmølleparken elektrisk til 150 kV-nettet i Mesballe.

En løsning, hvor Mesballe i stedet er en "mellemstation" kan måske etableres, hvor eventuelle reaktorer og koblingsanlæg etableres elektrisk isoleret fra det øvrige 150 kV-net. Det kan dog blive nødvendigt med tilkob af jord.

Fordele:
- Ombygningen af stationen kan koordineres tidsmæssigt med etableringen af havmølleparken, så der kan indregnes plads til reaktorer og reaktorfelter m.v., som kan blive nødvendige for det samlede kabelanlæg.

Ulemper:
- Ved elektrisk natteslutter i Mesballe kan spændingsvariationer måske risikeres i distributionsnettet, som følge af havmøllernes svingende effektproduktion. En SVC kan løse dette problem.
- Manglende overføringsveje i det eksisterende net, hvilket kan lede til yderligere forstærkningsbehov for at kunne klare en eventuel stigning i den fremtidige decentrale produktion på Djursland.
- Begrænsede kortslutningseffekt. En SVC kan løse dette problem.

2.1.3 Moselund
Moselund er etableret som en radialstation med kun én 150 kV-forbindelse til Trige. Der er i dag ingen transitsmuligheder, hvorfor en natteslutter her vil være meget omkostningstang i form af behovet for flere 150 kV-forbindelser til stationen. De samme betragtninger, som angivet i beskrivelsen af Mesballe, vedrørende spændingsspring kan risikeres i det underliggende distributionsnet ved udkobling af havmølleparken.

Fordele:
- Der ses ikke umiddelbart nogle fordele ved tilslutning af havmølleparken i station Moselund.

Ulemper:
- Stationens placering samt det eksisterende transmissionsnet.

2.1.4 Trige
Trige er en 150 kV-knudepunktsstation med ni 150 kV-forbindelser til øvrige 150 kV-stationer, samt tre generatorledninger fra Studstrupværket. Desuden er der to 400 kV-transforde, samt én 400 kV-generatorledning, ligeledes fra Studstrupværket. Der er én 400/150 kV-transformer, samt én 400 kV-reaktor. Sammenholdt med 150 kV-nettet er der således en virkelig god formaskning i transmissionsnettet tæt på det store forbrugscentrum i Århus. Kortslutningsniveauet er højt, hvilket minimerer risikoen for spændingsspring ved momentan udkob-
ling af havmølleparken. Spændingsvariationer i de underliggende distributionsnet, som følge af havmøllernes svingende effektproduktion, vil også være minimæret, da distributionsnettet ikke eksisterer direkte under station Trige.

Ved nettilslutning direkte i Trige ses der ikke umiddelbart behov for net-forstærkning af transmissionslinjerne, hverken på 150 kV-niveau eller 400 kV-niveau. Der ses en oplagt mulighed for etablering af en ekstra 400/150 kV-transformer til at føre den ekstra effekt op i 400 kV-nettet.

Man skal være opmærksom på fordelene i at etablere nettilslutningen adskilt fra det eksisterende 150 kV-net og direkte op via en ny 400 kV-transformer til 400 kV-nettet. Det giver nogle spændingsmæssige reguleringsmuligheder, som ikke vil være til stede uden en separat transformering. Denne model er tidligere benyttet ved Horns Rev 2. Uanset hvilket AC-spændingsniveau der vælges, kan denne model finde anvendelse.

Fordele:
- En meget stor grad af formaskning i transmissionsnettet gør denne station velegnet til nettilslutning af havmølleparken.
- Meget stor grad af fleksibilitet i den daglige drift, samt i n-1 situationer.
- Tæt på et stort forbrugscentrum i Århus.
- Minimale spændingsspring ved momentan ukobling af havmølleparken på grund af det store kortslutningsniveau.
- Der forventes ingen betydelige spændingsvariationer i det omkringliggende distributionsnet.

Ulemper:
- Den samlede afstand til havmølleparken gør nettilslutningen omkostnings tung.

2.1.5 Åstrup
Åstrup ligger placeret som den klart tæteste 150 kV-station på en mulig landfaring af sikaklerne fra havmølleparken. Der er mulighed for kompenserings af kablerne på stationen. Det kan dog komme på tale, at der skal tilkøbes jord for at få plads til reaktorerne.

Elektrisk set er en tilslutning i det eksisterende 150 kV-net i Åstrup uheldigt på grund af den lave kortslutningseffekt i stationen, samt de eksisterende kablers begrænsede overføringsvægne. Det kan derfor komme på tale at etablere en SVC i stationen for at reducere spændingsvariationerne som følge af havmøllernes svingende effektproduktion. Den samlede forbindelse mellem Trige og Åstrup skal opgraderes i overføringsvægne. Dette kan blandt andet gøres ved at etablere et nyt 150 kV-kabel Trige-Åstrup.

Tilstandsmaessigt er stationen fra omkring 2000, og der er således ingen ombygnings- og/eller renoveringsplaner for stationen.
Fordele:
- Kort afstand fra havmølleparken til det nærmeste transmissionsnet.
- Der er umiddelbart mulighed for etablering af reaktorer til landføringsanlægget i Åstrup.

Ulemper:
- Der skal etableres et kabel fra Trige til Åstrup da de nuværende kabler ikke kan overføre effekten fra havmølleparken.
- Begrænset kortslutningseffekt.
- Ved elektrisk nettilslutning i Åstrup kan spændingsvariationer forekomme i distributionsnettet som følge af havmøllernes svingende effektproduktion. En SVC kan dog løse dette problem.
- Der er manglende overføringsevne i det eksisterende net, hvilket vil betyde etablering af nye 150 kV-forbindelser videre til Trige, som er det nærmeste 400 kV-knudepunkt.

2.1.6 Studstrupværket
Ved nettilslutning på Studstrupværket vil det være nødvendigt at lade en eller to af 150 kV-generatorledningerne til Trige overgå til havmølleparkens nettilslutning i Trige.

Det kan stadig ses som en fordel, at landføringsanlægget etableres ved Åstrup, hvor kompensering af søkablerne kan foretages. Den videre forbindelse til Studstrupværket vil enten skulle gå forbi Mesballe og ned til Studstrupværket eller ned over Syddjurs kommune og over vandet det sidste stykke til Studstrupværket.

Dog skal man være opmærksom på, at brugen af generatorledningerne fra Studstrupværket til Trige kan ende med en kabellægning som led i en større kabellægningssituation. Det kan derfor vise sig som en dyrere løsning end at gå direkte fra Åstrup til Trige over Mesballe.

Renoveringsbehovet for 150 kV-generatorledningerne er ukendte.

Hvis der tages udgangspunkt i Studstrupværkets 150 kV-generatorledninger, skal der først indgås aftale om brugen af disse.

Fordele:
- Der er umiddelbart overføringsevne til stede i 150 kV-generatorledningerne fra Studstrup til Trige.
- Der er allerede etableret linjefelter i Trige.

Ulemper:
- Generatorledningerne er ejet af Studstrupværket.
- Alt afhængig af tracévalget for landføringsanlægget og frem til Studstrupværket kan der blive tale om ekstra kompensering undervejs på strækningen.
2.2 Sammenfatning og anbefalinger tilslutningspunkter

Det indstilles, at nettilslutningen sker i det nærmeste 400 kV-knudepunkt, så effekten kan føres effektivt væk. 400 kV-mæssigt er der to relevante stationer i området, hvoraf den ene, Hornbæk, er tyndt formasket i transmissionsnettet. Tilbage er der station Trige med et solidt 150 kV-net, som forbrugscentrummet i Århus kan aftage en stor del af effekten fra, ligesom der er to 400 kV-transførlinjer, som kan transitere den sidste del af effekten væk. Ved en fremtidig kabellægning af 150 kV-nettet skal der således tages hensyn til den ekstra effektindfødsning i Trige, som ved en god formaskning i 150 kV-nettet kan aftages i Århusområdet.

For at minimerer uheldige og/eller ukendte driftssituationer mest muligt og for at optimere den daglige drift af transmissionsnettet, herunder også ved revisionsplanlægning, anbefales det, at nettilslutningen foregår direkte i station Trige.

Det anbefales ligeledes at etablere nettilslutningen adskilt fra det eksisterende 150 kV-net og direkte op via en ny 400 kV-transformer til 400 kV-nettet. Fordelene ved det er, at hvis der ikke er noget belastning vil spændingen på 150 kV kabelstige på grund af Ferranti effekt, og for at holde spændingen ved acceptabel niveau på platformen skal spændingen på land sænkes. Hvis forbindelsen kombineres med det eksisterende 150 kV-net, skal spændingen på det sænkes, dermedfører at tabende vil blive større.

3. Tracé

På nuværende tidspunkt er det ikke fastlagt, hvor søkablet skal føres i land samt i hvilket tracé landkablet skal føres til station Trige. Dette skal ske i et tæt samarbejde med de berørte kommuner og en endelig afklæring vil først foreligge når der er foretaget de nødvendige natur- og miljøundersøgelser. De berørte kommuner vil formentlig i løbet af foråret 2009 udleægge areal til placering af kabellen til stationen samt areal til en planlægningszone, hvor inden for kabeltracét kan placeres.

Landkablet vil komme til at berøre Norddjurs, Syddjurs og Århus Kommuner. Kabelstationen, der skal placeres tættest muligt på kysten, vil formentlig blive placeret i Norddjurs Kommune.

Inden for planlægningszonen vil kabeltracét blive fastlagt i forbindelse med den endelige projektering. Ved placering af kabeltracét skal der tages flest mulige hensyn til bølger, natur, miljø og andre arealinteresser. Det kan dog ikke undgås, at en så lang kabeltrækning kan komme i konflikt med andre interesser, men i videst muligt omfang vil der blive arbejdet på, at mindske påvirkningerne fra landføringsanlägget mest muligt.

Der er mange forskellige steder, hvor søkablet kan føres i land og undersøgelser vil klaarlægge, hvor det vil være mest hensigtsmæssigt i forhold til de miljø- og naturmæssige interesser. Landkablet kan ligeledes føres frem til station Trige i mange forskellige tracéer, men også her vil det være nødvendigt at foretage

1 Det er kommunerne, der her ansvarer for planlægningen i henhold til planloven.
nogle undersøgelser. I forbindelse med de tekniske beregninger er der imidlertid taget udgangspunkt i forskellige forslag, men det er først i forbindelse med planlægningsprocessen i de berørte kommuner, der vil blive taget endelig stilling til landforingspunktet samt landkablets placering.

Til udarbejdelse af tekniske og økonomiske analyser, hvor kabellængder er nødvendige, anvendes to forskellige muligheder: tracé ved Lystrup strand og tracé nord for Grenå, som vist i figuren neden under. Tracéet ved Lystrup strand vil bestå af ca. 40 km landkabel og 49 km søkabel (total 89 km), mens tracéet nord for Grenå vil bestå af ca. 56 km landkabel og 26 km søkabel (total 82 km).

Figur 3.1 Tracé ved Lystrup strand og tracé nord for Grenå.